Федеральное государственное образовательное бюджетное учреждение высшего образования

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Новороссийский филиал Кафедра «Информатики, математики и общегуманитарные науки»

И.Г. РЗУН Методические рекомендации ЭКОНОМЕТРИКА

Направление подготовки: 38.03.01 Экономика

Направленность (профиль): Оценка бизнеса в цифровой

экономике.

Форма обучения: очная

Квалификация (степень) выпускника: бакалавр

Новороссийск 2022

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ

Цели и задачи

Целью изучения дисциплины является формирование у обучающихся системного представления об эконометрике, как науке, исследующей данные статистики для изучения поведения, описания и прогнозирования развития различных факторов.

Задачи дисциплины

Важной методической задачей курса является формирование понимания обучающимися основных положений эконометрики; приобретение опыта построения эконометрических моделей, принятия решений о спецификации и идентификации модели и выбора метода оценки параметров модели, интерпретации результатов, получения прогнозных оценок на основе анализа эконометрических данных; освоение современных эконометрических пакетов прикладных программ.

РЕКОМЕНДАЦИИ ПО ПРОВЕДЕНИЮ ЛЕКЦИЙ

При подготовке к занятиям обучающийся должен просмотреть конспекты лекций, рекомендованную литературу по данной теме; подготовиться к ответу на контрольные вопросы. Успешное изучение дисциплины требует от обучающихся посещения лекций, активной работы на семинарах, выполнения всех учебных заданий преподавателя, ознакомления с основной и дополнительной литературой, интернет-источниками.

Запись лекции — одна из форм активной самостоятельной работы обучающихся, требующая навыков и умения кратко, схематично, последовательно и логично фиксировать основные положения, выводы, обобщения, формулировки. Культура записи лекции — один из важнейших факторов успешного и творческого овладения знаниями. Последующая работа над текстом лекции воскрешает в памяти содержание лекции, позволяет развивать

аналитическое мышление. Лекции имеют обзорный характер и нацелены на освещение наиболее трудных и дискуссионных вопросов, а также призваны способствовать формированию навыков самостоятельной работы с научной литературой. Работа с конспектом лекций предполагает просмотр конспекта в тот же день после занятий, пометку материала конспекта, который вызывает затруднения для понимания. Попытайтесь найти ответы затруднительные вопросы, используя рекомендуемую литературу. Если самостоятельно не удалось разобраться в материале, сформулируйте вопросы и обратитесь за помощью к консультации, ближайшей преподавателю на лекции семинаре. Регулярно отводите время для повторения пройденного материала, проверяя свои знания, умения И навыки контрольным вопросам.

Работу с основной и дополнительной литературой целесообразно начинать с освоения материала учебников, которые содержат необходимый материал по каждой теме.

Подготовка к семинарскому занятию зависит от темы занятия и вопросов, предложенных преподавателем, для подготовки к семинару.

Постоянная активность на занятиях, готовность ставить и обсуждать актуальные проблемы дисциплины — залог успешной работы и положительной оценки.

ЛИНЕЙНЫЙ ПАРНЫЙ РЕГРЕССИОННЫЙ АНАЛИЗ

Одним из методов изучения стохастических связей между признаками является регрессионный анализ.

Регрессионный анализ представляет собой вывод уравнения регрессии, с помощью которого находится средняя величина случайной переменной (признака-результата), если величина другой (или других) переменных (признаков-факторов) известна. Он включает следующие этапы:

1) выбор формы связи (вида аналитического уравнения регрессии);

- 2) оценку параметров уравнения;
- 3) оценку качества аналитического уравнения регрессии.

Наиболее часто для описания статистической связи признаков используется линейная форма. Внимание к линейной связи объясняется четкой экономической интерпретацией ее параметров, ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчетов преобразуют (путем логарифмирования или замены переменных) в линейную форму.

В случае линейной парной связи уравнение регрессии примет вид: $y_i = a + b \cdot x_i + u_i$. Параметры данного уравнения a и b оцениваются по данным статистического наблюдения x и y. Результатом такой оценки является уравнение: $\widetilde{y}_i = \widetilde{a} + \widetilde{b} \cdot x_i$,

где \widetilde{a} , \widetilde{b} - оценки параметров a и b, \widetilde{y}_i - значение результативного признака (переменной), полученное по уравнению регрессии (расчетное значение).

Наиболее часто для оценки параметров используют *метод* наименьших квадратов (МНК).

Метод наименьших квадратов дает наилучшие (состоятельные, эффективные и несмещенные) оценки параметров уравнения регрессии. Но только в том случае, если выполняются определенные предпосылки относительно случайного члена (u) и независимой переменной (x).

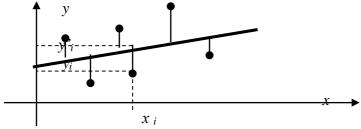
Задача оценивания параметров линейного парного уравнения методом наименьших квадратов состоит в следующем:

получить такие оценки параметров \widetilde{a} , \widetilde{b} , при которых сумма квадратов отклонений фактических значений результативного признака - y_i от расчетных значений - $\widetilde{\mathcal{Y}}_i$ минимальна.

Формально критерий МНК можно записать так:

$$S = \sum_{i=1}^{n} (y_i - \widetilde{y}_i)^2 \to \min.$$

Проиллюстрируем суть данного метода графически. Для этого построим точечный график по данным наблюдений $(x_i, y_i, i=1;n)$ в прямоугольной системе координат (такой точечный график называют корреляционным полем). Попытаемся подобрать прямую линию, которая ближе всего расположена к точкам корреляционного поля. Согласно методу наименьших квадратов линия выбирается так, чтобы сумма квадратов расстояний по вертикали между точками корреляционного поля и этой линией была бы минимальной.



Математическая запись данной задачи:

$$S = \sum_{i=1}^{n} (y_i - (\tilde{a} + \tilde{b} \cdot x_i)^2 \to \min.$$

Значения y_i и x_i i=1;n нам известны, это данные наблюдений. В функции S они представляют собой константы. Переменными в данной функции являются искомые оценки

параметров - \tilde{a} , \tilde{b} . Чтобы найти минимум функции 2-ух переменных необходимо вычислить частные производные данной функции по каждому из параметров и приравнять их нулю, т.е.

$$\frac{\partial S}{\partial \tilde{a}} = 0, \frac{\partial S}{\partial \tilde{b}} = 0.$$

В результате получим систему из 2-ух нормальных

линейных уравнений:
$$\begin{cases} \sum_{i=1}^n y_i = \widetilde{a} \cdot n + \widetilde{b} \sum_{i=1}^n x_i \\ \sum_{i=1}^n y_i \cdot x_i = \widetilde{a} \sum_{i=1}^n x_i + \widetilde{b} \sum_{i=1}^n x_i^2 \end{cases}$$

Решая данную систему, найдем искомые оценки параметров:

$$\widetilde{b}_{1} = \frac{n\sum_{i} x_{i} y_{i} - \overline{x} \cdot \overline{y}}{n\sum_{i} x_{i}^{2} - (\overline{x})^{2}} = \frac{\overline{x} \cdot \overline{y} - \overline{x} \cdot \overline{y}}{\sigma_{x}^{2}}$$

$$\widetilde{a} = \overline{y} - \widetilde{b} \cdot \overline{x}$$

Правильность расчета параметров уравнения регрессии может быть проверена сравнением сумм $\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} \widetilde{y}_i$ (возможно некоторое расхождение из-за округления расчетов).

Для расчета оценок параметров \widetilde{a} , \widetilde{b} можно построить таблицу 1.

Знак коэффициента регрессии b указывает направление связи (если b>0, связь прямая, если b<0, то связь обратная). Величина b показывает на сколько единиц изменится в среднем признак-результат -у при изменении признака-фактора - x на 1 единицу своего измерения.

Формально значение параметра a — среднее значение у при х равном нулю. Если признак-фактор не имеет и не может иметь нулевого значения, то вышеуказанная трактовка параметра а не имеет смысла.

 $m{O}$ осуществляется с помощью коэффициента линейной парной корреляции - $r_{x,y}$. Он может быть рассчитан по формуле:

$$r_{x,y} = \frac{\overline{x \cdot y} - \overline{x} \cdot \overline{y}}{\sigma_x \cdot \sigma_y}$$
. Кроме того, коэффициент линейной парной корреляции может быть определен через коэффициент

регрессии b:
$$r_{x,y} = b \frac{\sigma_x}{\sigma_y}$$
.

Область допустимых значений линейного коэффициента парной корреляции от -1 до +1. Знак коэффициента корреляции указывает направление связи. Если $r_{x,y}{>}0$, то связь прямая; если $r_{x,y}{<}0$, то связь обратная.

Если данный коэффициент по модулю близок к единице, то связь между признаками может быть интерпретирована как довольно тесная линейная. Если его модуль равен единице $| \mathbf{r}_{x,y} | = 1$, то связь между признаками функциональная линейная. Если признаки x и y линейно независимы, то $\mathbf{r}_{x,y}$ близок к 0.

Для расчета $r_{x,y}$ можно использовать также таблицу 1.

Таблица 1

,	Xi	i	$x_i \cdot y_i$	$(x_i - x)^2$	$(y_i - y)^2$	
1	1 x	y 1	\mathbf{Y}_{1}	$(x_1 - \overline{x})$	$(y_1 - \overline{y})$)2
2	2	y 2	$egin{array}{c} X_2 \cdot \ Y_2 \end{array}$	$(x_2-\overline{x})$	$(y_2 - y_2)^2$)2
•••						
n	X n	$\begin{bmatrix} y \\ n \end{bmatrix}$	Y_N	$(x_n - \overline{x})$	$(y_m - \overline{y})^2$) ²
С умма по столбцу	χ	Σy	$\sum_{x\cdot y}$		$-\frac{1}{x}$) ² $\sum (y_i -$	
С реднее	- x	$x = \frac{\sum x_i}{n} \bar{y}$	$y = \frac{\sum y_i}{n} \overline{x \cdot y} =$	$=\frac{\sum x_i \cdot y_i}{n} \sigma_x^2 = \sum_{i=1}^{n} \sigma_x^2$	$\sum_{i=1}^{\infty} \frac{(x_i - x)^2}{n} \sigma_y^2 = \sum_{i=1}^{\infty} \frac{1}{n} \sigma_y^2 = \sum_{i=1}^{\infty} \frac{1}{n$	(y_i)

значени			
e			

Для оценки качества полученного уравнения регрессии рассчитывают теоретический коэффициент детерминации $-R^2_{yx}$:

$$R_{yx}^{2} = \frac{\delta^{2}}{\sigma_{y}^{2}} = \frac{\sum_{i=1}^{n} (\tilde{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = 1 - \frac{\varepsilon^{2}}{\sigma_{y}^{2}} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \tilde{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}},$$

где δ^2 – объясненная уравнением регрессии дисперсия y; ϵ^2 - остаточная (необъясненная уравнением регрессии) дисперсия y;

 σ^2_y - общая (полная) дисперсия y.

Коэффициент детерминации характеризует долю вариации (дисперсии) результативного признака y, объясняемую регрессией (а, следовательно, и фактором x), в общей вариации (дисперсии) y. Коэффициент детерминации R^2_{yx} принимает значения от 0 до 1. Соответственно величина 1- R^2_{yx} характеризует долю дисперсии y, вызванную влиянием прочих неучтенных в модели факторов и ошибками спецификации.

При парной линейной регрессии $R^2_{yx} = r^2_{yx}$.

Оценка статистической значимости параметров уравнения регрессии.

С помощью МНК мы получили лишь *оценки* параметров уравнения регрессии, которые характерны для конкретного статистического наблюдения (конкретного набора значений x и y). Если оценку параметров произвести по данным другого статистического наблюдения (другому набору значений x и y), то

получим другие численные значения \widetilde{a} , b. Мы предполагаем, что все эти наборы значений x и y извлечены из одной и той же генеральной совокупности. Чтобы проверить, значимы ли параметры, т.е. значимо ли они отличаются от нуля для генеральной совокупности используют статистические методы проверки гипотез.

В качестве основной (нулевой) гипотезы выдвигают гипотезу о незначимом отличии от нуля параметра или статистической характеристики в генеральной совокупности. Наряду с основной (проверяемой) гипотезой выдвигают альтернативную (конкурирующую) гипотезу о неравенстве нулю параметра или статистической характеристики в генеральной совокупности. В случае если основная гипотеза окажется неверной, мы принимаем альтернативную. Для проверки этой гипотезы используется t-критерий Стьюдента.

Найденное по данным наблюдений значение t-критерия (его еще называют наблюдаемым или фактическим) сравнивается с табличным (критическим) значением, определяемым по таблицам распределения Стьюдента (которые обычно приводятся в конце учебников и практикумов по статистике или эконометрике). Табличное значение определяется в зависимости от уровня значимости (α) и числа степеней свободы, которое в случае линейной парной регрессии равно (n-2), n-число наблюдений.

Если фактическое значение t-критерия больше табличного (по модулю), то основную гипотезу отвергают и считают, что с вероятностью $(1-\alpha)$ параметр или статистическая характеристика в генеральной совокупности значимо отличается от нуля.

Если фактическое значение t-критерия меньше табличного (по модулю), то нет оснований отвергать основную гипотезу, т.е. параметр или статистическая характеристика в генеральной совокупности незначимо отличается от нуля при уровне значимости α .

Для параметра b критерий проверки имеет вид:

$$t_{(b=0)} = \frac{\widetilde{b}}{\mu_{\widetilde{b}}} \,,$$

где b - оценка коэффициента регрессии, полученная по наблюдаемым данным;

 $\mu_{\widetilde{b}}$ – стандартная ошибка коэффициента регрессии.

Для линейного парного уравнения регрессии стандартная ошибка коэффициента вычисляется по формуле:

$$\mu_{\tilde{b}} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \tilde{y}_i)^2}{(n-2)\sum_{i=1}^{n} (x_i - \bar{x})^2}}.$$

Числитель в этой формуле может быть рассчитан через коэффициент детерминации и общую дисперсию признака-

результата:
$$\sum_{i=1}^{n} (y_i - \tilde{y}_i)^2 = n \cdot (1 - R_{yx}^2) \cdot \sigma_y^2$$
.

Для параметра a критерий проверки гипотезы о незначимом отличии его от нуля имеет вид:

$$t_{(a=0)} = \frac{\widetilde{a}}{\mu_{\widetilde{a}}},$$

где \tilde{a} - оценка параметра регрессии, полученная по наблюдаемым данным;

 $\mu_{\widetilde{a}}$ – стандартная ошибка параметра a.

Для линейного парного уравнения регрессии:

$$\mu_{\tilde{a}} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \tilde{y}_i)^2 \sum_{i=1}^{n} x_i^2}{n(n-2) \sum_{i=1}^{n} (x_i - \tilde{x})^2}}.$$

Для проверки гипотезы о незначимом отличии от нуля коэффициента линейной парной корреляции в генеральной совокупности используют следующий критерий:

$$t_{(r=0)} = \frac{r_{yx}}{\mu_r}$$
, где r_{yx} - оценка коэффициента корреляции,

полученная по наблюдаемым данным; μ_r – стандартная ошибка коэффициента корреляции r_{yx} .

Для линейного парного уравнения регрессии:

$$\mu_r = \sqrt{\frac{(1 - r_{yx}^2)}{(n - 2)}} \ .$$

В парной линейной регрессии между наблюдаемыми значениями критериев существует взаимосвязь: $t_{(b=0)} = t_{(r=0)}$.

Прогноз ожидаемого значения результативного признака у по линейному парному уравнению регрессии.

Пусть требуется оценить значение признака-результата для заданного значения признака-фактора (x^p). Прогнозируемое значение признака-результата с доверительной вероятностью равной (1- α) принадлежит интервалу прогноза:

$$(\widetilde{y}^p - t \cdot \mu_p; \widetilde{y}^p + t \cdot \mu_p),$$

где \tilde{y}^p - точечный прогноз;

t — коэффициент доверия, определяемый по таблицам распределения Стьюдента в зависимости от уровня значимости α и числа степеней свободы (n-2);

 μ_p - средняя ошибка прогноза.

Точечный прогноз рассчитывается по линейному уравнению регрессии, как: $\widetilde{y}^p = \widetilde{a} + \widetilde{b} \cdot x^p$.

Средняя ошибка прогноза определяется по формуле:

$$\mu_{p} = \sqrt{\frac{\sum (y_{i} - \tilde{y}_{i})^{2}}{n - 2} \left(1 + \frac{1}{n} + \frac{(x^{p} - \bar{x})^{2}}{\sum (x_{i} - \bar{x})^{2}}\right)}.$$

Задание № 1

На основе данных, приведенных в Приложении 1 и соответствующих Вашему варианту (таблица 2), требуется:

- Рассчитать коэффициент линейной парной корреляции и построить уравнение линейной парной регрессии признака другого. Один OT ИЗ признаков, Вашему варианту, будет соответствующих играть факторного (x), другой – результативного (y). Причинноследственные связи между признаками установить самим на основе экономического анализа. Пояснить смысл параметров уравнения.
- 2. Определить теоретический коэффициент детерминации и остаточную (необъясненную уравнением регрессии) дисперсию. Сделать вывод.
- 3. Оценить статистическую значимость уравнения регрессии в целом на пятипроцентном уровне с помощью F-критерия Фишера. Сделать вывод.
- 4. Выполнить прогноз ожидаемого значения признакарезультата y при прогнозном значении признака-фактора x, составляющим 105% от среднего уровня x. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал с вероятностью 0.95.

Таблица 2

							Номер
a	омер	омер	омер	ap	омер	омер	признаков из
p	начал	конеч	приз	иа	начал	конеч	прил. 1
И	ьного	ного	нако	HT	ьного	ного	
a	набл	набл	в из		набл	набл	
Н	юден	юден	прил		юден	юден	
T	КИ	RИ	. 1		RИ	RИ	
							8
							1,3
1		0	,2	1	6	5	
							4,5
2		0	,4	2	6	5	
							1,4
3		1	,3	3	7	6	

4		1	,5	4	7	6	2,5
5		2	,4	5	8	7	1,5
6		2	,5	6	8	7	2,3
7		3	,5	7	9	8	1,2
8		3	,3	8	9	8	3,4
9		4		9	0	9	1,3
			,2		0		4,5
0		4	,4	0		9	1,4
1		5	,3	1	1	0	2,5
2		5	,5	2	1	0	1,5
3		6	,4	3	2	1	2,3
4		6	,5	4	2	1	1,2
5		7	,5	5	3	2	
6		7	,3	6	3	2	3,4
7		8	,2	7	4	3	1,3
8		8	,4	8	4	3	4,5
9	0	9	,3	9	5	4	1,4
0	0	9	,5	0	5	4	2,5

							1.5
1	1	0	,4	1	6	5	1,5
2	1	0		2	6	5	2,3
2	1	0	,5	2	6	3	
3	2	1	,5	3	7	6	1,2
4	2	1	,3	4	7	6	3,4
5	3	2	,2	5	8	7	1,3
	3		,2		0	,	4,5
6	3	2	,4	6	8	7	
7	4	3	,3	7	9	8	1,4
	4						2,5
8	4	3	,5	8	9	8	
9	5	4	,4	9	0	9	1,5
0	5	4	,5	0	0	9	2,3
1	6	5		1	1	0	1,2
	U	<u> </u>	,5	1	1	U	2.4
2	6	5	,3	2	1	0	3,4
3	7	6	,2	3	2	1	1,3
4	7						4,5
4	/	6	,4	4	2	1	4.4
5	8	7	,3	5	3	2	1,4
6	8	7	,5	6	3	2	2,5
7	9	8	,4	7	4	3	1,5

							2.2
8	9	8	,5	8	4	3	2,3
9	0	9	,5	9	5	4	1,2
9	U	7	,,,	9	3	4	2.4
0	0	9	,3	0	5	4	3,4
1	1	0	2	1	(-	1,3
1	1	0	,2	1	6	5	
ا ر	1	0	1	2	6	_	4,5
2	1	0	,4	2	6	5	
					_		1,4
3	2	1	,3	3	7	6	
			_	_	_		2,5
4	2	1	,5	4	7	6	
							1,5
5	3	2	,4	5	8	7	
							2,3
6	3	2	,5	6	8	7	
							1,2
7	4	3	,5	7	9	8	,
							3,4
8	4	3	,3	8	9	8	,
							1,3
9	5	4	,2	9	0	9	
							4,5
0	5	4	,4		0	9	

Тема 2. МНОЖЕСТВЕННЫЙ РЕГРЕССИОННЫЙ АНАЛИЗ

Построение уравнения множественной регрессии начинается с решения вопроса о *спецификации модели*, который в свою очередь включает 2 круга вопросов: отбор факторов и выбор уравнения регрессии.

Отбор факторов обычно осуществляется в два этапа:

- 1) теоретический анализ взаимосвязи результата и круга факторов, которые оказывают на него существенное влияние;
- 2) количественная оценка взаимосвязи факторов с результатом. При линейной форме связи между признаками данный этап сводится к анализу корреляционной матрицы (матрицы парных линейных коэффициентов корреляции):

```
r_{y,y} r_{y,x1} r_{yx2} .... r_{y,xm} r_{x1,y} r_{x1,x2} r_{x2x2} .... r_{x2,xm} .....
```

 $r_{xm,y}$ $r_{xm,x1}$ $r_{xm,x2}$ $r_{xm,xm}$

где $r_{y,xj}$ — линейный парный коэффициент корреляции, измеряющий тесноту связи между признаками y и xj j=1;m, m - число факторов.

 $r_{xj,xk}$ — линейный парный коэффициент корреляции, измеряющий тесноту связи между признаками xj и xk j,k=1;m.

Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:

- 1. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность (например, в модели урожайности качество почвы задается в виде баллов).
- 2. Каждый фактор должен быть достаточно тесно связан с результатом (т.е. коэффициент парной линейной корреляции между фактором и результатом должен быть существенным).
- 3. Факторы не должны быть сильно коррелированы друг с другом, тем более находиться в строгой функциональной связи (т.е. они не должны быть интеркоррелированы). Разновидностью

интеркоррелированности факторов является мультиколлинеарность - тесная линейная связь между факторами.

Мультиколлинеарность может привести к нежелательным последствиям:

- 1) оценки параметров становятся ненадежными. Они обнаруживают большие стандартные ошибки. С изменением объема наблюдений оценки меняются (не только по величине, но и по знаку), что делает модель непригодной для анализа и прогнозирования.
- 2) затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в «чистом» виде, ибо факторы коррелированны; параметры линейной регрессии теряют экономический смысл;
- 3) становится невозможным определить изолированное влияние факторов на результативный показатель.

Мультиколлинеарность имеет место, если определитель матрицы межфакторной корреляции близок к нулю:

$$Det|R| = \begin{vmatrix} r_{x1x1} & r_{x2x1} & r_{x3x1} \\ r_{x1x2} & r_{x2x2} & r_{x3x2} \\ r_{x1x3} & r_{x2x3} & r_{x3x3} \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0.$$

Если же определитель матрицы межфакторной корреляции близок к единице, то мультколлинеарности нет. Существуют различные подходы преодоления сильной межфакторной корреляции. Простейший из них — исключение из модели фактора (или факторов), в наибольшей степени ответственных за мультиколлинеарность при условии, что качество модели при этом пострадает несущественно (а именно, теоретический коэффициент детерминации $-R^2_{y(xI...xm)}$ снизится несущественно).

Определение факторов, ответственных за мультиколлинеарность, может быть основано на анализе матрицы межфакторной корреляции. При этом определяют пару признаков-факторов, которые сильнее всего связаны между собой (коэффициент линейной парной корреляции максимален по

модулю). Из этой пары в наибольшей степени ответственным за мультиколлинеарность будет тот признак, который теснее связан с другими факторами модели (имеет более высокие по модулю значения коэффициентов парной линейной корреляции).

Еще один способ определения факторов, ответственных за мультиколлинеарность основан на вычислении коэффициентов множественной $(R^2_{xj(x1,...,xj-1,xj+1,...,xm)}),$ детерминации показывающего зависимость фактора хј от других факторов модели x1,...,xj-1, xj+1,...,xm. Чем ближе значение коэффициента детерминации единице, множественной К тем больше ответственность мультиколлинеарность фактора, за выступающего в роли зависимой переменной. Сравнивая между множественной коэффициенты детерминации различных факторов можно проранжировать переменные по степени ответственности за мультиколлинеарность.

При выборе формы уравнения множественной регрессии предпочтение отдается линейной функции:

$$y_i = a + b_1 \cdot x I_i + b_2 \cdot x 2_i + ... + b_m \cdot x m_i + u_i$$

в виду четкой интерпретации параметров.

Данное уравнение регрессии называют уравнением регрессии в естественном (натуральном) масштабе. Коэффициент регрессии b_j при факторе xj называют условно-чистым коэффициентом регрессии. Он измеряет среднее по совокупности отклонение признака-результата от его средней величины при отклонении признака-фактора xj на единицу, при условии, что все прочие факторы модели не изменяются (зафиксированы на своих средних уровнях).

Если не делать предположения о значениях прочих факторов, входящих в модель, то это означало бы, что каждый из них при изменении xj также изменялся бы (так как факторы связаны между собой), и своими изменениями оказывали бы влияние на признак-результат.

РАСЧЕТ ПАРАМЕТРОВ УРАВНЕНИЯ ЛИНЕЙНОЙ МНОЖЕСТВЕННОЙ РЕГРЕССИИ.

Параметры уравнения множественной регрессии можно оценить методом наименьших квадратов, составив и решив систему нормальных линейных уравнений.

Кроме того, для линейной множественной регрессии существует другой способ реализации МНК при оценке параметров - через β -коэффициенты (через параметры уравнения регрессии в стандартных масштабах).

Модель регрессии в стандартном масштабе предполагает, что все значения исследуемых признаков переводятся в стандарты (стандартизованные значения) по формулам:

$$t_{xj_i} = \frac{xj_i - \overline{xj}}{\sigma_{xj}}, \quad j=1,m,$$

где xj_i - значение переменной xj_i в i-ом наблюдении.

$$t_{y_i} = \frac{y_i - \overline{y}}{\sigma_y}.$$

Таким образом, начало отсчета каждой стандартизованной переменной совмещается с ее средним значением, а в качестве единицы изменения принимается ее среднее квадратическое отклонение σ. Если связь между переменными в естественном масштабе линейная, то изменение начала отсчета и единицы измерения этого свойства не нарушат, так что и стандартизованные переменные будут связаны линейным соотношением:

$$\widetilde{t}_{y} = \sum_{j=1}^{m} \beta j \cdot t_{xj}.$$

Для оценки β-коэффциентов применим МНК. При этом система нормальных уравнений будет иметь вид:

$$r_{xIy}=\beta 1+r_{xIx2}\cdot\beta 2+...+r_{xIxm}\cdot\beta m$$

 $r_{x2y}=r_{x2xI}\cdot\beta 1+\beta 2+...+r_{x2xm}\cdot\beta m$
...

 $r_{xmy} = r_{xmx1} \cdot \beta 1 + r_{xmx2} \cdot \beta 2 + ... + \beta m$

Найденные из данной системы β-коэффициенты позволяют определить значения коэффициентов в регрессии в естественном масштабе по формулам:

$$\widetilde{b}_{j} = \beta j \cdot \frac{\sigma_{y}}{\sigma_{x}}, j=1;m; \quad \widetilde{a} = \overline{y} - \sum_{j=1}^{m} \widetilde{b}_{j} \cdot \overline{xj}$$

Показатели тесноты связи факторов с результатом.

Если факторные признаки различны по своей сущности и (или) имеют различные единицы измерения, то коэффициенты регрессии b_i при разных факторах являются несопоставимыми. Поэтому уравнение регрессии дополняют соизмеримыми фактора показателями тесноты связи c результатом, позволяющими ранжировать факторы по силе влияния на результат. К таким показателям тесноты связи относят: частные эластичности, β-коэффициенты, коэффициенты коэффициенты корреляции.

Частные коэффициенты эластичности Эј

рассчитываются по формуле:
$$\partial_j = \frac{\partial y}{\partial x_j} \cdot \frac{x_j}{\overline{y_{x_1,\dots,x_m}}}$$
. Частный

коэффициент эластичности показывают, на сколько процентов в среднем изменяется признак-результат у с изменением признакафактора xj на один процент от своего среднего уровня при фиксированном положении других факторов модели. В случае линейной зависимости $Э_j$ рассчитываются по формуле:

$$\Theta_j = \widetilde{b}_j \cdot \frac{x_j}{\overline{y_{x1,\dots,xm}}}$$
, где \widetilde{b}_j – оценка коэффициента регрессии при

j-ом факторе.

Стандартизированные частные коэффициенты регрессии - β -коэффициенты (β_j) показывают, на какую часть своего среднего квадратического отклонения σ_y изменится признакрезультат y с изменением соответствующего фактора x_j на величину своего среднего квадратического отклонения (σ_{x_j}) при неизменном влиянии прочих факторов (входящих в уравнение).

По коэффициентам эластичности и β-коэффициентам могут быть сделаны противоположные выводы. Причины этого: а) вариация одного фактора очень велика; б) разнонаправленное воздействие факторов на результат.

Коэффициент β_j может также интерпретироваться как показатель прямого (непосредственного) влияния j-ого фактора (x_j) на результат (y). Во множественной регрессии j-ый фактор оказывает не только прямое, но и косвенное (опосредованное) влияние на результат (т.е. влияние через другие факторы модели).

Косвенное влияние измеряется величиной:
$$\sum_{i=1,...,j-1,\ j+1,...,m} \beta_i \cdot r_{xj,xi}$$
,

где m- число факторов в модели. Полное влияние j-ого фактора на результат равное сумме прямого и косвенного влияний измеряет коэффициент линейной парной корреляции данного фактора и результата — $r_{xj,y}$.

Коэффициент частной корреляции измеряет «чистое» влияние фактора на результат при устранении воздействия прочих факторов модели.

Для расчета частных коэффициентов корреляции могут быть использованы парные коэффициенты корреляции.

Для случая зависимости y от двух факторов можно вычислить 2 коэффициента частной корреляции:

$$r_{yx1/x2} = \frac{r_{x1y} - r_{x2y} \cdot r_{x1x2}}{\sqrt{(1 - r_{x1x2}^2)(1 - r_{x2y}^2)}},$$

(фактор х2 фиксирован).

$$r_{yx2/x1} = \frac{r_{x2y} - r_{x1y} \cdot r_{x1x2}}{\sqrt{(1 - r^2_{x1x2})(1 - r^2_{x1y})}}$$

(фактор х1 фиксирован).

Это коэффициенты частной корреляции 1-ого порядка (порядок определяется числом факторов, влияние которых устраняется).

Частные коэффициенты корреляции, рассчитанные по таким формулам изменяются от -1 до +1. Они используются не только для ранжирования факторов модели по степени влияния на результат, но и также для отсева факторов. При малых значениях $r_{yxm/x1,x2...xm-1}$ нет смысла вводить в уравнение m-ый фактор, т.к. его чистое влияние на результат несущественно.

Коэффициенты множественной детерминации и корреляции характеризуют совместное влияние всех факторов на результат.

По аналогии с парной регрессией можно определить долю вариации результата, объясненной вариацией включенных в модель факторов (δ^2), в его общей вариации (σ^2_y). Ее количественная характеристика — теоретический множественный коэффициент детерминации ($R^2_{y(xI,\dots,xm)}$). Для линейного уравнения регрессии данный показатель может быть рассчитан через β -коэффициенты, как:

$$R_{y(x_1,\dots,x_m)}^2 = \sum_{j=1}^m \beta_j \cdot r_{y\,x_j}.$$

 $R_{y(x1,\dots,xm)} = \sqrt{R_{y(x1,\dots,xm)}^2}$ - коэффициент множественной корреляции. Он принимает значения от 0 до 1 (в отличии от парного коэффициента корреляции, который может принимать отрицательные значения). Поэтому R не может быть использован для интерпретации направления связи. Чем плотнее фактические значения y_i располагаются относительно линии регрессии, тем меньше остаточная дисперсия и, следовательно, больше величина $R_{y(x1,\dots,xm)}$. Таким образом, при значении R близком к 1, уравнение регрессии лучше описывает фактические данные и факторы сильнее влияют на результат. При значении R близком к 0 уравнение регрессии плохо описывает фактические данные и факторы оказывают слабое воздействие на результат.

Оценка значимости полученного уравнения множественной регрессии.

Оценка значимости уравнения множественной регрессии осуществляется путем проверки гипотезы о равенстве нулю коэффициент детерминации рассчитанного по данным генеральной совокупности: $R_{y(x1,\dots,xm)}^{2(z)}=0$ или $b_1=b_2=\dots=b_m=0$ (гипотеза о незначимости уравнения регрессии, рассчитанного по данным генеральной совокупности).

Для ее проверки используют *F*-критерий Фишера.

При этом вычисляют фактическое (наблюдаемое) значение F-критерия, через коэффициент детерминации $R^2_{y(x1,\dots,xm)}$, рассчитанный по данным конкретного наблюдения:

$$F = \frac{R_{y(x1,...,xm)}^2}{1 - R_{y(x1,...,xm)}^2} \cdot \frac{n - h}{h - 1}$$
, где *n*-число наблюдений; $h - 1$

число оцениваемых параметров (в случае двухфакторной линейной регрессии h=3).

По таблицам распределения Фишера-Снедоккора находят критическое значение F-критерия ($F_{\kappa p}$). Для этого задаются уровнем значимости α (обычно его берут равным 0,05) и двумя числами степеней свободы k1=h-1 и k2=n-h.

Сравнивают фактическое значение F-критерия ($F_{\text{набл}}$) с табличным $F_{\text{кр}}(\alpha;k1;k2)$. Если $F_{\text{набл}}{<}F_{\text{кр}}(\alpha;k1;k2)$, то гипотезу о незначимости уравнения регрессии не отвергают. Если $F_{\text{набл}}{>}F_{\text{кр}}(\alpha;k1;k2)$, то выдвинутую гипотезу отвергают и принимают альтернативную гипотезу о статистической значимости уравнения регрессии.

Задание № 2

На основе данных, приведенных в Приложении и соответствующих Вашему варианту (таблица 2), требуется:

1. Построить уравнение множественной регрессии. При этом признак-результат и один из факторов остаются теми же, что и в первом задании. Выберите дополнительно еще один фактор из приложения 1 (границы наблюдения должны совпадать

с границами наблюдения признака-результата, соответствующего Вашему варианту). При выборе фактора нужно руководствоваться его экономическим содержанием или другими подходами. Пояснить смысл параметров уравнения.

- 2. Рассчитать частные коэффициенты эластичности. Сделать вывод.
- 3. Определить стандартизованные коэффициенты регрессии (β-коэффициенты). Сделать вывод.
- 4. Определить парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделать выводы.
- 5. Оценить значимость параметров уравнения регрессии с помощью t-критерия Стьюдента, а также значимость уравнения регрессии в целом с помощью общего F-критерия Фишера. Предложить окончательную модель (уравнение регрессии). Сделать выводы.