Федеральное государственное образовательное бюджетное учреждение высшего образования «ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (Финансовый университет)

Департамент анализа данных, принятия решений и финансовых технологий

Щетинин Е.Ю.

НЕЙРОННЫЕ СЕТИ

Рабочая программа дисциплины

для студентов, обучающихся по направлению подготовки 09.03.03 «Прикладная информатика», профиль «ИТ — сервисы и технологии обработки данных в экономике и финансах»

Федеральное государственное образовательное бюджетное учреждение высшего образования «ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (Финансовый университет)

Департамент анализ данных, принятия решений и финансовых технологий

УТВЕРЖДАЮ
Проректор по развитию
образовательных программ
Е.А. Каменева
«29» апреля 2020 г.

Щетинин Е.Ю. **НЕЙРОННЫЕ СЕТИ**

Рабочая программа дисциплины

для студентов, обучающихся по направлению подготовки 09.03.03 «Прикладная информатика», профиль «ИТ – сервисы обработка данных в экономике и финансах»

Рекомендовано Ученым советом факультета прикладной информационных технологий (протокол №25 от 22.04.2020 г.)

Одобрено Советом учебно-научного Департамента анализа данных, принятия решений и финансовых технологий (протокол №10 от 17.03.2020 г.)

Москва 2020

Рецензенты: А.В. Чечкин, д.ф.-м.н., профессор департамента анализа данных, принятия решений и финансовых технологий

Щетинин Е.Ю. «НЕЙРОННЫЕ СЕТИ». Рабочая программа дисциплины для студентов, обучающихся по направлению подготовки 09.03.03 «Прикладная информатика» профиль: «ИТ – сервисы обработки данных в экономике и финансах», (программа подготовки бакалавра) — М.: Финансовый университет при Правительстве Российской Федерации, департамент «Анализ данных, принятия решений и финансовых технологий», 2020. - 26 с.

Дисциплина «**Нейронные сети»** относится к Модулю дисциплин по выбору, углубляющих освоение профиля «ИТ — сервисы обработки данных в экономике и финансах» направление подготовки 09.03.03 «Прикладная информатика».

В рабочей программе дисциплины представлены цели и задачи дисциплины, требования к результатам освоения дисциплины, содержание дисциплины, тематика практических занятий и технология их проведения, формы самостоятельной работы студентов, система оценивания, учебно-методическое и информационное обеспечение дисциплины.

	УДК 003.26.09
ББК	

Учебное издание Щетинин Евгений Юрьевич Нейронные сети Рабочая программа дисциплины

Компьютерный набор, верстка

Е. Ю. Щетинин

Формат 60х90/16. Гарнитура Times New Roman Усл. п.л._____ . Изд. № ____ .Тираж - ____ экз. 3аказ № 0тиречатано в Финуниверситете

- © Е.Ю. Щетинин, 2020
- © Финансовый университет, 2020

ОГЛАВЛЕНИЕ

1.	Наименование дисциплины
2.	Перечень планируемых результатов освоения образовательной программы
с ук	азанием индикаторов их достижения и планируемых результатов обучения
по д	исциплине4
3.	Место дисциплины в структуре образовательной программы 4
4.	Объем дисциплины в зачетных единицах и в академических часах с
выде	елением объема аудиторной (лекции, семинары) и самостоятельной работы
обуч	ающихся4
5.	Содержание дисциплины, структурированное по темам (разделам)
дисц	циплины с указанием их объемов (в академических часах) и видов учебных
заня	тий5
5.1.	Содержание дисциплины5
5.2.	Учебно-тематический план
5.3.	Содержание семинаров, практических занятий9
6.	Перечень учебно-методического обеспечения для самостоятельной работы
обуч	нающихся по дисциплине12
6.1.	Перечень вопросов, отводимых на самостоятельное освоение дисциплины,
форг	мы внеаудиторной самостоятельной работы12
6.2.	Перечень вопросов, заданий, тем для подготовки к текущему кон-
трол	ю
7.	Фонд оценочных средств для проведения промежуточной аттестации
обуч	ающихся по дисциплине19
8.	Перечень основной и дополнительной учебной литературы, необходимой
для (освоения дисциплины
9.	Перечень ресурсов информационно-телекоммуникационной сети
«Ин	тернет», необходимых для освоения дисциплины
10.	Методические указания для обучающихся по освоению дисциплины 25
11.	Перечень информационных технологий, используемых при осуществлении
обра	зовательного процесса по дисциплине, включая перечень необходимого
прог	раммного обеспечения и информационных справочных систем
12.	Описание материально-технической базы, необходимой для осуществления
обра	зовательного процесса по дисциплине

1. Наименование дисциплины

«Нейронные сети».

2. Перечень планируемых результатов освоения образовательной программы с указанием индикаторов их достижения и планируемых результатов обучения по дисциплине.

Дисциплина «**Нейронные сети**» обеспечивает формирование следующих компетенций: ПКП – 4

Код	Наименование	Индикаторы дости-	Результаты обучения (владения ² ,
компе-	компетенции	жения компетен-	умения и знания), соотнесенные с
тенции		ции ¹	компетенциями/индикаторами
			достижения компетенции
ПКП-4	Способность при-	1.Демонстрирует	Знать: основные положения теории
	менять техноло-	знания в области	и методологии моделирования и
	гии моделирова-	теории и методоло-	анализа с сфере экономики и финан-
	ния и анализа про-	гии моделирования и	COB
	цессов в сфере	анализа в сфере эко-	<u>Уметь:</u> применять основные теоре-
	экономики и фи-	номики и финансов.	тические методы и модели в сфере
	нансов		экономики и финансов
		• •	
		2.Строит математи-	Знать: математические модели
		ческие модели в	сферы экономики и финансов
		сфере экономики и	Уметь: строить математические мо-
		финансов.	дели в сфере экономики и финансов

3. Место дисциплины в структуре образовательных программ

Дисциплина «Нейронные сети» относится к Модулю дисциплин по выбору, углубляющих освоение профиля «ИТ-сервисы и технологии обработки данных в экономике и финансах» направление подготовки 09.03.03 «Прикладная информатика».

4. Объем дисциплины в зачетных единицах и в академических часах с выделением объема аудиторной (лекции, семинары) и самостоятельной работы обучающихся

Общая трудоёмкость дисциплины составляет 4 зачётные единицы.

 $^{^{1}}$ Заполняется при реализации актуализированных ОС ВО ФУ и ФГОС ВОЗ++

² Владения формулируются только при реализации ОС ВО ФУ первого поколения и ФГОС ВО 3+

Вид промежуточной аттестации – зачет Вид текущего контроля – контрольная работа.

Очная/очно-заочная форма обучения, 2020 г.

Вид учебной работы	Всего	Семестр 7/8
по дисциплине	(в з/е и часах)	(в часах)
Общая трудоемкость дисци-	4/144	144
плины	1/ 1 1 1	1
Контактная работа	70/48	70/48
- Аудиторные занятия	70/40	70/40
Лекции	16/16	16/16
Семинары,	54/32	54/32
практические занятия	34/32	34/32
Самостоятельная работа	74/96	74/96
Вид текущего контроля	Контрольная работа	Контрольная работа
Вид промежуточной аттеста-	Зачет	Зачет
ции		

5. Содержание дисциплины, структурированное по темам (разделам) дисциплины с указанием их объемов (в академических часах) и видов учебных занятий

5.1. Содержание дисциплины

1. Биологические аспекты нервной деятельности.

Нейрон. Аксон. Синапс. Рефлекторная дуга. Центральная нервная система. Модели искусственного нейрона. Функции активации. Нейрон с векторным входом. Биологические аспекты нервной деятельности. Нейрон. Аксон. Синапс. Рефлекторная дуга. Центральная нервная система. Модели искусственного нейрона. Функции активации. Нейрон с векторным входом.

2. Искусственные нейронные сети. Архитектура искусственных нейронных сетей.

Искусственные нейронные сети. Архитектура искусственных нейронных сетей. Набор средств для создания, инициализации, обучения, моделирования и визуализации сети.

3. Построение сетей различной архитектуры с помощью инструментального программного пакета Neural Network Toolbox системы MATLAB.

Построения сетей различной архитектуры с помощью инструментального программного пакета Neural Network Toolbox системы MATLAB.

4. Методы и алгоритмы обучения искусственных нейронных сетей. Градиентные алгоритмы обучения. Алгоритмы, основанные на использовании метода сопряженных градиентов.

Методы и алгоритмы обучения искусственных нейронных сетей. Градиентные алгоритмы обучения. Алгоритмы, основанные на использовании метода сопряженных градиентов.

5. Архитектура персептрона и специальные функции для создания персептрона, настройки его весов и смещений.

Архитектура персептрона и специальные функции для создания персептрона, настройки его весов и смещений.

6. Линейные нейронные сети.

Линейные нейронные сети. Настройки параметров по методу Вудроу-Хоффа. Построение и обучение линейных сетей для классификации векторов, линейной аппроксимации, предсказания, слежения и фильтрации сигналов, идентификации и моделирования линейных систем.

7. Радиальные базисные сети общего вида.

Радиальные базисные сети общего вида. Архитектуры радиальных базисных нейронных сетей общего вида и специальные функции для их создания и автоматической настройки весов и смещений. Применение таких сетей для классификации векторов и аппроксимации функций.

8. Радиальные базисные сети типа GRNN. Применение GRNN сетей для решения задач обобщенной регрессии, анализа временных рядов и аппроксимации функций.

Радиальные базисные сети типа GRNN. Применение GRNN сетей для решения задач обобщенной регрессии, анализа временных рядов и аппроксимации функций.

9. Радиальные базисные сети типа PNN. Решение задач классификации на основе подсчёта вероятности принадлежности векторов к рассматриваемым классам.

Радиальные базисные сети типа PNN. Решение задач классификации на основе подсчёта вероятности принадлежности векторов к рассматриваемым классам.

10. Самоорганизующихся карты Кохонена. Самоорганизующихся LVQсети.

Самоорганизующихся карты Кохонена. Применение самоорганизующихся карт для решения задач кластеризации входных векторов. Самоорганизующихся LVQ-сети. Архитектуры самоорганизующихся нейронных сетей типа LVQ и специальные функции для их создания, настройки весов и обучения.

11. Рекуррентные нейронные сети Элмана. Построения сетей управления движущимися объектами. Построения систем технического зрения и решения других динамических задач.

Рекуррентные нейронные сети Элмана. Построения сетей управления движущимися объектами. Построения систем технического зрения и решения других динамических задач.

12. Применение сетей Хопфилда для решения задач распознавания образов и создания ассоциативной памяти.

Применение сетей Хопфилда для решения задач распознавания образов и создания ассоциативной памяти.

5.2. Учебно-тематический план

Очная / очно-заочная форма обучения, 2020 г.

<u>№</u>	Наименование тем		Трудоёмкость в часах	
П/П	(разделов) дисциплины	Bce	Аудиторная работа	
		ГО		1

			Общ ая, в т.ч.:	Лек- ции	Се- мина ры, прак- тиче- ские заня- тия	Занятия в интерак- тивных формах	Само- стоя- тель- ная работа	Формы теку- щего кон- троля успе- ваемости
1.	Биологические аспекты нервной деятельности. Нейрон. Аксон. Синапс. Рефлекторная дуга. Центральная нервная система. Модели искусственного нейрона. Функции активации. Нейрон с векторным входом	9/11	3/3	1/1	2/2	2	6/8	Самостоятельные работы. Участие в решении задач на практических занятиях. Собеседования по домашним заданиям.
2.	Искусственные нейронные сети. Архитектура искусственных нейронных сетей.	9/11	3/3	1/1	2/2	2	6/8	
3.	Построения сетей различной архитектуры с помощью инструментального программного пакета Neural Network Toolbox системы МАТLAB.	9/11	3/3	1/1	2/2	2	6/8	
4.	Методы и алгоритмы обучения искусственных нейронных сетей. Градиентные алгоритмы обучения. Алгоритмы, основанные на использовании метода сопряженных градиентов.	13/13	5/3	1/1	4/2	2	8/10	
5.	Архитектура персептрона и специальные функции для создания персептрона, настройки его весов и смещений.	11/11	3/3	1/1	2/2	2	8/8	
6.	Линейные нейронные сети.	19/15	13/7	1/1	12/6	2	6/8	
7.	Радиальные базисные сети общего вида.	9/11	3/3	1/1	2/2	2	6/8	

сети типа PNN. Решение задач классификации на основе подсчёта вероятности принадлежности векторов к рассматриваемым классам. 10. Самоорганизующихся слои Кохонена Самоорганизующихся карты Кохонена. Самоорганизующихся карты Кохонена. Самоорганизующихся LVQ-сети. 11. Рекуррентные нейронные сети Элмана. Построения сетей управления движущимися объектами. Построения систем технического зрения и решения других динамических задач. 12. Применение сетей Хопфилда для решения задач распознавания образов и создания ассоциативной памяти. В целом по дисциплине 144 70/48 16/16 54/32 24 74/96 Контрольная работа.	8.	Радиальные базисные сети типа GRNN. При-менение GRNN сетей для решения задач обобщенной регрессии, анализа временных рядов и аппроксимации функций.	21/15	15/7	1/1	14/6	2	6/8	
слои Кохонена Самоорганизующихся карты Кохонена. Самоорганизующихся LVQ-сети. 11. Рекуррентные нейронные сети Элмана. Построения сетей управления движущимися объектами. Построения систем технического зрения и решения других динамических задач. 12. Применение сетей Хопфилда для решения задач распознавания образов и создания ассоциативной памяти. В целом по дисциплине 12/12 6/4 2/2 4/2 2 6/8 8/10 4/4 2/2 4/2 2 6/8 8/10 4/4 2/2 2/2 4/2 2 6/8 Контрольная работа.	9.	задач классификации на основе подсчёта вероятности принадлежности векторов к рассматрива-		6/4	2/2	4/2	2	6/8	
ные сети Элмана. По- строения сетей управле- ния движущимися объ- ектами. Построения си- стем технического зре- ния и решения других динамических задач. 12. Применение сетей Хоп- филда для решения за- дач распознавания обра- зов и создания ассоциа- тивной памяти. В целом по дисци- плине 144 70/48 16/16 54/32 24 74/96 Контрольная работа.	10.	слои Кохонена Самоор- ганизующихся карты Кохонена. Самооргани-	12/12	6/4	2/2	4/2	2	6/8	
филда для решения задач распознавания образов и создания ассоциативной памяти. В целом по дисциплине 144 70/48 16/16 54/32 24 74/96 Контрольная работа.	11.	ные сети Элмана. По- строения сетей управле- ния движущимися объ- ектами. Построения си- стем технического зре- ния и решения других	12/12	6/4	2/2	4/2	2	6/8	
плине 144 /0/48 16/16 54/32 24 /4/96 работа.	12.	филда для решения задач распознавания образов и создания ассоциа-	8/10	4/4	2/2	2/2	2	4/6	
Итого в % 34/50%			144	70/48	16/16	54/32	24 34/50%	74/96	-

5.3. Содержание семинаров, практических занятий

Наименование тем	Перечень вопросов для обсуждения	Формы проведения
(разделов)	на семинарских, практических занятиях,	занятий
дисциплины	рекомендуемые источники из разделов	
	8,9 (указывается раздел и порядковый но-	
	мер источника)	

Тема 1. Биологические аспекты нервной деятельности. Нейрон. Аксон. Синапс. Рефлекторная дуга. Центральная нервная система. Модели искусственного нейрона. Функции активации. Нейрон с векторным входом	Биологические аспекты нервной деятельности. Нейрон. Аксон. Синапс. Рефлекторная дуга. Центральная нервная система. Рекомендуемые источники: n.8, [1]; n.9, [2] Модели искусственного нейрона. Функции активации. Нейрон с векторным входом Рекомендуемые источники: n.8, [2], [3]	Интерактивная форма, Практикум по решению задач по тематике занятия в малых группах (2-4 студента) и коллективное обсуждение решений
Тема 2. Искусственные нейронные сети. Архитектура искусственных нейронных сетей. Набор средств для создания, инициализации, обучения, моделирования и визуализации сети.	Искусственные нейронные сети. Архитектура искусственных нейронных сетей Рекомендуемые источники: n.8, [2], [3]; [4], [5] Набор средств для создания, инициализации, обучения, моделирования и визуализации сети. Рекомендуемые источники: n.8, [3]; n. 9 [4], [5]	Интерактивная форма, Практикум по решению задач по тематике занятия в малых группах (2-4 студента) и коллективное обсуждение решений
Тема 3. Построения сетей различной архитектуры с помощью инструментального программного пакета Neural Network Toolbox системы MATLAB	Построения сетей различной архитектуры с помощью инструментального программного пакета Neural Network Toolbox системы МАТLAB Рекомендуемые источники: n.9, [1]	Интерактивная форма, Практикум по решению задач по тематике занятия в малых группах (2-4 студента) и коллективное обсуждение решений
Тема 4. Методы и алгоритмы обучения искусственных нейронных сетей. Градиентные алгоритмы обучения. Алгоритмы, основанные на использовании метода сопряженных градиентов.	Методы и алгоритмы обучения искусственных нейронных сетей. Градиентные алгоритмы обучения. Алгоритмы, основанные на использовании метода сопряженных градиентов Рекомендуемые источники: п.9, [1], [2]	Интерактивная форма, Практикум по решению задач по тематике занятия в малых группах (2-4 студента) и коллективное обсуждение решений
Тема 5. Архитектура персептрона и специальные функции для создания персептрона, настройки его весов и смещений.	Архитектура персептрона и специальные функции для создания персептрона, настройки его весов и смещений Рекомендуемые источники: n.9, [2], [3], [4]	Интерактивная форма, Практикум по решению задач по тематике занятия в малых группах (2-4 студента) и коллективное обсуждение решений

Тема 6. Линейные нейронные сети. Настройки параметров по методу Вудроу Хоффа. Построение и обучение линейных сетей для классификации векторов, линейной аппроксимации, предсказания, слежения и фильтрации сигналов, идентификации и моделирования линейных систем.	Линейные нейронные сети. Настройки параметров по методу Вудроу Хоффа. Построение и обучение линейных сетей для классификации векторов, линейной аппроксимации, предсказания, слежения и фильтрации сигналов, идентификации и моделирования линейных систем. Рекомендуемые источники: n.9, [2], [3], [4]	Интерактивная форма, Практикум по решению задач по тематике занятия в малых группах (2-4 студента) и коллективное обсуждение решений
Тема 7.	Радиальные базисные сети общего вида. Ар-	Интерактивная
Радиальные базисные сети общего вида. Архитектуры радиальных базисных нейронных сетей общего вида и специальные функции для их создания и автоматической настройки весов и смещений. Применение таких сетей для классификации векто-ров и аппроксимации функций.	хитектуры радиальных базисных нейронных сетей общего вида и специальные функции для их создания и автоматической настройки весов и смещений. Рекомендуемые источники: п.9, [2], [3], [4]	форма, Практикум по решению задач по тематике занятия в малых группах (2-4 студента) и коллективное обсуждение решений
Тема 8.	Радиальные базисные сети типа GRNN.	Интерактивная
Радиальные базисные сети типа GRNN. Применение GRNN сетей для решения задач обобщенной регрессии, анализа временных рядов и аппроксимации функций.	Рекомендуемые источники: п.9, [2], [3], [4]	форма, Практикум по решению задач по тематике занятия в малых группах (2-4 студента) и коллективное обсуждение решений
Тема 9.	Радиальные базисные сети типа PNN.	Интерактивная
Радиальные базисные сети типа PNN. Решение задач классификации на основе подсчёта вероятности принадлежности векторов к рас-	Решение задач классификации на основе подсчёта вероятности принадлежности векторов к рассматриваемым классам. Рекомендуемые источники: n.9, [2], [3], [4]	форма, Практикум по решению задач по тематике занятия в малых группах (2-4 студента) и коллективное обсуждение ре-
сматриваемым классам.		шений

Тема 10.	Carraman Manager II	Mymomoyemyr-
	Самоорганизующихся карты Кохонена. При-	Интерактивная
Самоорганизующихся	менение самоорганизующихся карт для ре-	форма, Практикум по
карты Кохонена.	шения задач кластеризации входных векто-	решению задач по те-
Применение самоорга-	ров.	матике занятия в ма-
низующихся карт для	Рекомендуемые источники: : п.9, [2], [3], [4]	лых группах (2-4 сту-
решения задач		дента) и коллектив-
кластеризации входных		ное обсуждение ре-
векторов. Самооргани-		шений
зующихся LVQ-сети.		
Архитектуры самоор-		
ганизующихся нейрон-		
ных сетей типа LVQ и		
специальные функции		
для их создания,		
настройки весов и		
обучения.		
Тема 11.	Рекуррентные нейронные сети Элмана.	Интерактивная
Рекуррентные нейрон-	Рекомендуемые источники: п.9, [2], [3], [4]	форма, Практикум по
ные сети Элмана.		решению задач по те-
Построения сетей уп-		матике занятия в ма-
равления движущимися		лых группах (2-4 сту-
объектами. Построения		дента) и коллектив-
систем технического		ное обсуждение ре-
зрения и решения		шений
других динамических		
задач.		
Тема 12.	Искусственные сети Хопфилда.	Интерактивная
Искусственные сети	Рекомендуемые источники: п.9, [2], [3], [4]	форма, Практикум по
Хопфилда. Применение	, , , , , , , , , , , , , , , , , , ,	решению задач по те-
сетей Хопфилда для		матике занятия в ма-
решения задач распоз-		лых группах (2-4 сту-
навания образов и		дента) и коллектив-
создания ассоциатив-		ное обсуждение ре-
ной памяти.		шений
		I

6. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Перечень вопросов, отводимых на самостоятельное освоение дисциплины, формы внеаудиторной самостоятельной работы

Наименование тем (разделов) дисциплины	Перечень вопросов, отводимых на само- стоятельное освоение	Формы внеауди- торной самостоя- тельной работы
Тема 1.	Биологические аспекты нервной деятельно-	Работа с учебной ли-
	сти. Нейрон. Аксон. Синапс. Рефлекторная	тературой. Решение
	дуга. Центральная нервная система.	

		_
Биологические аспекты нервной деятельности. Нейрон. Аксон. Синапс. Рефлекторная дуга. Центральная нервная система. Модели искусственного нейрона. Функции активации. Нейрон с векторным входом		типовых задач. Разбор вопросов по теме занятия. Выполнение домашних заданий к каждому занятию.
Тема 2. Искусственные нейронные сети. Архитектура искусственных нейронных сетей. Набор средств для создания, инициализации, обучения, моделирования и визуализации сети.	Набор средств для создания, инициализации, обучения, моделирования и визуализации сети.	Работа с учебной литературой. Решение типовых задач. Разбор вопросов по теме занятия. Выполнение домашних заданий к каждому занятию.
Тема 3. Построения сетей различной архитектуры с помощью инструментального программного пакета Neural Network Toolbox системы MATLAB.	Пакет Neural Network Toolbox MATLAB	Работа с учебной литературой. Решение типовых задач. Разбор вопросов по теме занятия. Выполнение домашних заданий к каждому занятию.
Тема 4. Методы и алгоритмы обучения искусственных нейронных сетей. Градиентные алгоритмы обучения. Алгоритмы, основанные на использовании метода сопряженных градиентов.	Алгоритмы, основанные на использовании метода сопряженных градиентов	Работа с учебной литературой. Решение типовых задач. Разбор вопросов по теме занятия. Выполнение домашних заданий к каждому занятию.
Тема 5. Архитектура персептрона и специальные функции для создания персептрона, настройки его весов и смещений.	Архитектура персептрона	Работа с учебной литературой. Решение типовых задач. Разбор вопросов по теме занятия. Выполнение домашних заданий к каждому занятию.
Тема 6. Линейные нейронные сети. Настройки пара- метров по методу Ву-	Настройки параметров по методу Вудроу Хоффа.	Работа с учебной литературой. Решение типовых задач. Разбор вопросов по

дроу Хоффа. Построение и обучение линейных сетей для классификации векторов, линейной аппроксимации, предсказания, слежения и фильтрации сигналов, идентификации и моделирования линейных си-		теме занятия. Вы- полнение домашних заданий к каждому занятию.
стем.		
Тема 7. Радиальные базисные сети общего вида. Архитектуры радиальных базисных нейронных сетей общего вида и специальные функции для их создания и автоматической настройки весов и смещений. Применение для классификации векторов и аппроксимации функций	Применение для классификации векторов и аппроксимации функций	Работа с учебной литературой. Решение типовых задач. Разбор вопросов по теме занятия. Выполнение домашних заданий к каждому занятию.
Тема 8. Радиальные базисные сети типа GRNN. Применение GRNN сетей для решения задач обобщенной регрессии, анализа временных рядов и аппроксимации функций.	Применение GRNN сетей для анализа временных рядов и аппроксимации функций.	Работа с учебной литературой. Решение типовых задач. Разбор вопросов по теме занятия. Выполнение домашних заданий к каждому занятию.
Тема 9. Радиальные базисные сети типа PNN. Решение задач классификации на основе подсчёта вероятности принадлежности векторов к рассматриваемым классам.	Задачи классификации на основе подсчёта вероятности принадлежности векторов к рассматриваемым классам.	Работа с учебной литературой. Решение типовых задач. Разбор вопросов по теме занятия. Выполнение домашних заданий к каждому занятию.
Тема 10. Самоорганизующихся карты Кохонена. Применение самоорга-низующихся карт для решения задач кластеризации входных векторов. Самооргани-зую-	Архитектуры самоорганизующихся нейронных сетей типа LVQ и специальные функции для их создания, настройки весов и обучения	Работа с учебной литературой. Решение типовых задач. Разбор вопросов по теме занятия. Выполнение домашних заданий к каждому занятию.

щиеся LVQ-сети. Ар-		
хитектуры самоор-га-		
низующихся нейрон-		
ных сетей типа LVQ и		
специальные функции		
для их создания,		
настройки весов и обу-		
чения		
Тема 11.	Построения сетей управления движущи-	Работа с учебной ли-
Рекуррентные нейрон-	мися объектами.	тературой. Решение
ные сети Элмана. По-		типовых задач. Раз-
строения сетей уп-рав-		бор вопросов по
ления движущимися		теме занятия. Вы-
объектами. Построе-		полнение домашних
ния систем техниче-		заданий к каждому
ского зрения и реше-		занятию.
ния других динамиче-		
ских задач.		
Тема 12.	Применение сетей Хопфилда для создания	Работа с учебной ли-
Искусственные сети	ассоциативной памяти.	тературой. Решение
Хопфилда. Примене-		типовых задач. Раз-
ние сетей Хопфилда		бор вопросов по
для решения задач		теме занятия. Вы-
распознавания образов		полнение домашних
и создания ассоциатив-		заданий к каждому
ной памяти.		занятию.

6.2. Перечень вопросов, заданий, тем для подготовки к текущему контролю

Примеры заданий контрольной работы

Задание 1.

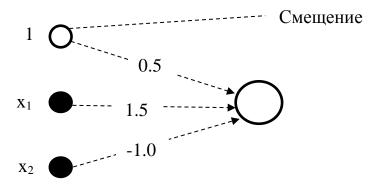


Рисунок 1.

(а). Вычислите комбинированный сетевой ввод для элемента на рис. 1 и соответствующее выходное значение при использовании пороговой функции и входного вектора [0.7 2.5].

- (б). Вычислите выходное значение, использовав в качестве функции активности сигмоидальную функцию. Входной вектор остается таким же, как и в п. (а).
- (в). Вычислите комбинированный ввод для сети с архитектурой, показанной на рис. 1, но с набором весовых значений $[-0.2\ 0.03\ 1.2]$ и таким же входным вектором, как и в п. (а).

Задание 2. Найти весовые коэффициенты для модели нейронной сети, подобной показанной на рис. 1 и представляющей следующее уравнение:

$$2x_2 = -4x_1 + 8$$

Задание 3. Представьте полностью прямой и обратный проходы в сети с прямой связью, использующей алгоритм обратного распространения ошибок, для входного образца [0.1 0.9] и целевого выходного значения 0.9 в предположении, что сеть имеет архитектуру 2-2.1 (т.е. два входных, два скрытых один выходной элемент) с весовыми коэффициентами.

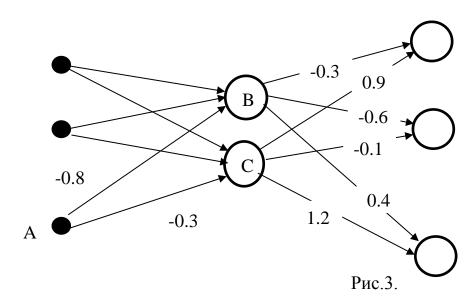
$$\begin{bmatrix} 0.1 & \cdots & 0.1 \\ -0.2 & \ddots & -0.1 \\ 0.1 & \cdots & 0.3 \end{bmatrix}$$

Для первого слоя и

$$\begin{bmatrix} 0.2 \\ 0.2 \\ 0.3 \end{bmatrix}$$

Для второго слоя.

Задание 4. Сеть типа 2-2.1 с радиальными базисными функциями используется для решения проблемы XOR. Первый слой весов задан матрицей


$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$

Для каждого вводимого образца XOR вычислите значения активности для всех скрытых элементов, если функция активности имеет вид ϕ (net)= exp [-net²], где net является евклидовой нормой.

Задание 5. На рис.3 показана сеть с обратным распространением ошибок во время обработки учебного вектора [0.1 0.9 0.9], для которого целевым выходным вектором является [0.1 0.9 0.1]. Пусть выходом элемента в является значение 0.1

а выходом элемента С-значение 0.8. предположим, что функцией активности является сигмоид.

- (а) вычислите фактический выходной вектор
- (б) вычислите значения ошибок для каждого выходного элемента
- (в) вычислите значение ошибок для каждого скрытого элемента

(г) вычислите изменения весовых значений для связей, идущих от элемента A. Норма обучения предполагается равной 0.25.

Примерные вопросы к контрольной работе

- 1. Искусственные нейронные сети. Архитектура искусственных нейронных сетей. Набор средств для создания, инициализации, обучения, моделирования и визуализации сети.
- 2. Методы и алгоритмы обучения искусственных нейронных сетей. Градиентные алгоритмы обучения.
- 3. Алгоритмы обучения, основанные на использовании метода сопряженных градиентов.
- 4. Архитектура персептрона и специальные функции для создания персептрона, настройки его весов и смещений.
- 5. Линейные нейронные сети. Настройки параметров по методу Вудроу-Хоффа.

- 6. Построение и обучение линейных сетей для классификации векторов, линейной аппроксимации, предсказания, слежения и фильтрации сигналов, идентификации и моделирования линейных систем.
- 7. Радиальные базисные сети общего вида.
- 8. Архитектуры радиальных базисных нейронных сетей общего вида и специальные функции для их создания и автоматической настройки весов и смещений.
- 9. Применение таких сетей для классификации векторов и аппроксимации функций.
- 10. Радиальные базисные сети типа GRNN.
- 11. Применение GRNN сетей для решения задач обобщенной регрессии, анализа временных рядов и аппроксимации функций.
- 12. Радиальные базисные сети типа PNN.
- 13. Решение задач классификации на основе подсчёта вероятности принадлежности векторов к рассматриваемым классам.
- 14. Самоорганизующихся слои Кохонена. Архитектуры самоорганизующихся нейронных слоев Кохонена и специальные функции для их создания, инициализации, взвешивания, накопления, активации, настройки весов и смещений, адаптации и обучения.
- 15. Применение самоорганизующихся слоев для исследования топологической структуры данных, их объединением в кластеры (группы) и распределением по классам.
- 16. Применение самоорганизующихся карт для решения задач кластеризации входных векторов.
- 17. Самоорганизующихся LVQ-сети. Архитектуры самоорганизующихся нейронных сетей типа LVQ и специальные функции для их создания, настройки весов и обучения.
- 18. Рекуррентные нейронные сети Элмана.
- 19. Построения сетей управления движущимися объектами.
- 20. Построения систем технического зрения и решения других динамических задача.

- 21. Архитектуры рекуррентных нейронных сетей Хопфилда и специальные функции для их создания, взвешивания входов, накопления и активизации.
- 22. Применение сетей Хопфилда для решения задач распознавания образов и создания ассоциативной памяти.
- 23. Применение нейронных сетей для проектирования систем управления динамическими процессами

Критерии бальной оценки различных форм текущего контроля успеваемости

Критерии бальной оценки различных форм текущего контроля успеваемости содержится в соответствующих методических рекомендациях Департамента анализа данных, принятия решений и финансовых технологий.

7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по данной дисциплине

Перечень компетенций с указанием индикаторов их достижения в процессе освоения образовательной программы содержится в разделе 2. «Перечень планируемых результатов освоения образовательной программы с указанием индикаторов их достижения и планируемых результатов обучения по дисциплине».

Типовые контрольные задания или иные материалы, необходимые для оценки индикаторов достижения компетенций, знаний и умений

Код компе- тенции	Наименование компе- тенции	Примеры заданий для оценки индикаторов достижения компетенции	
ПКП-4	Способность применять технологии моделирования и анализа процессов в сфере экономики и финансов	1.Демонстрирует знания в области теории и методологии моделирования и анализа в сфере экономики и финансов. Задание 1 Сформулируйте и охарактеризуйте основные принципы моделирования в сфере экономики и финансов 2.Строит математические модели в сфере экономики и финансов. Задание 2.	

	Постройте	математическую	модель	сети	Эл-
	мана для пр	едприятия.			

Примеры типовых заданий

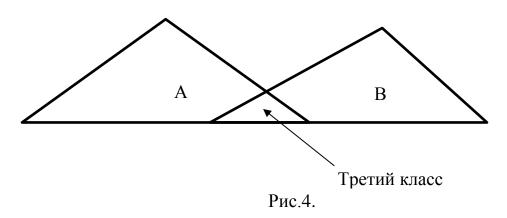
- 1. Предположим, что точки (-1, 1),(-1, -1),(1, -1) принадлежат классу A, а точки (-2, -2),(1, 1),(2, 2),(4, 1)- классу B.
 - (а) докажите, что эти классы не являются линейно отделимыми
 - (б) предположив, что выход элементов сети задается условием

Вывод =
$$\begin{cases} 1, & \text{если комбинированный ввод } \geq 0 \\ 0, & \text{если комбинированный ввод } < 0 \end{cases}$$

Покажите, что определенный ниже матрицей W_1 первый слой весовых значений в сети с тремя слоями преобразует проблему в линейную (первая строка матрицы W_1 определяет весовые коэффициенты смещения):

$$\mathbf{W}_1 = \begin{bmatrix} 1 & \cdots & -6 \\ -2 & \ddots & -2 \\ -1 & \cdots & -3 \end{bmatrix}$$

- (в) определите значения второго слоя весов так, чтобы сеть правильно классифицировала указанные выше образы. Предположите, что сеть имеет один выводной элемент.
- 2. Точки $\{(4,-1), (8,-2), (1,1), (3,6)\}$ принадлежат классу A, а точки $\{(-8,4), (-8,-3), (-1,-1), (2,-9)\}$ классу B. Постройте минимальную сеть, правильно классифицирующую эти точки.
- 3. Определите сеть с радиальными базисными функциями, решающую проблему XOR, в предположении, что функции активности скрытых элементов имеют вид $f(r) = \sqrt{e^2 + r^2}$
- 4. Постройте подходящую сеть с прямой связью, моделирующую операцию логического AND.
- 5. Для сетей с обратным распространением ошибок другой часто используемой функцией активности является двухполюсный сигмоид. Эта функция имеет область значений (-1,1) и определяется формулой


$$f(x) = \frac{2}{1 + \exp(-x)} - 1.$$

Производную этой функции можно выразить в виде

$$f'(x) = \frac{1}{2}[1 + f(x)][1 - f(x)].$$

Предложите правило коррекции ошибок для выходных и скрытых элементов.

- 6. Постройте график производной функции-сигмоида и объясните, как связаны относительная величина обновления веса и значение активности элемента.
- 7. На рис. 4 показаны два класса, А и В, образующие треугольные области. Третий класс определяется как пересечение классов А и В. Предложите архитектуру сети с обратным распространением ошибок, решающей такую задачу классификации. Объясните, почему вы выбрали именно такую архитектуру.

- 8. Объясните, почему в сети с обратным распространением ошибок весовые коэффициенты инициализируются как положительными, так и отрицательными случайными значениями, а не только положительными.
- 9. Подумайте о том, чем отличается сеть с обратным распространением ошибок, в которой в качестве функций активности используются функции Гаусса, от сети с радиальными базисными функциями.

Примерные вопросы для подготовки к зачету

- 24. Биологические аспекты нервной деятельности.
- 25. Модели искусственного нейрона. Функции активации. Нейрон с векторным входом.

- 26. Искусственные нейронные сети. Архитектура искусственных нейронных сетей. Набор средств для создания, инициализации, обучения, моделирования и визуализации сети.
- 27. Построения сетей различной архитектуры с помощью инструментального программного пакета Neural Network Toolbox системы MATLAB.
- 28. Методы и алгоритмы обучения искусственных нейронных сетей. Градиентные алгоритмы обучения.
- 29. Алгоритмы обучения, основанные на использовании метода сопряженных градиентов.
- 30. Архитектура персептрона и специальные функции для создания персептрона, настройки его весов и смещений.
- 31. Линейные нейронные сети. Настройки параметров по методу Вудроу-Хоффа.
- 32. Построение и обучение линейных сетей для классификации векторов, линейной аппроксимации, предсказания, слежения и фильтрации сигналов, идентификации и моделирования линейных систем.
- 33. Радиальные базисные сети общего вида.
- 34. Архитектуры радиальных базисных нейронных сетей общего вида и специальные функции для их создания и автоматической настройки весов и смещений.
- 35. Применение таких сетей для классификации векторов и аппроксимации функций.
- 36. Радиальные базисные сети типа GRNN.
- 37. Применение GRNN сетей для решения задач обобщенной регрессии, анализа временных рядов и аппроксимации функций.
- 38. Радиальные базисные сети типа PNN.
- 39. Решение задач классификации на основе подсчёта вероятности принадлежности векторов к рассматриваемым классам.

- 40. Самоорганизующихся слои Кохонена. Архитектуры самоорганизующихся нейронных слоев Кохонена и специальные функции для их создания, инициализации, взвешивания, накопления, активации, настройки весов и смещений, адаптации и обучения.
- 41. Применение самоорганизующихся слоев для исследования топологической структуры данных, их объединением в кластеры (группы) и распределением по классам.
- 42. Самоорганизующихся карты Кохонена.
- 43. Применение самоорганизующихся карт для решения задач кластеризации входных векторов
- 44. Самоорганизующихся LVQ-сети. Архитектуры самоорганизующихся нейронных сетей типа LVQ и специальные функции для их создания, настройки весов и обучения.
- 45. Рекуррентные нейронные сети Элмана.
- 46. Построения сетей управления движущимися объектами.
- 47. Построения систем технического зрения и решения других динамических задача.
- 48. Архитектуры рекуррентных нейронных сетей Хопфилда и специальные функции для их создания, взвешивания входов, накопления и активизации.
- 49. Применение сетей Хопфилда для решения задач распознавания образов и создания ассоциативной памяти.
- 50. Применение нейронных сетей для проектирования систем управления динамическими процессами

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) основная:

1. Кухаренко, Б.Г. Интеллектуальные системы и технологии : учебное пособие / Б.Г. Кухаренко ; Министерство транспорта Российской Федерации,

Московская государственная академия водного транспорта. – Москва : Альтаир : МГАВТ, 2015. – 115 с. - ЭБС Университетская библиотека online. – URL: http://biblioclub.ru/index.php?page=book&id=429758 (дата обращения: 09.05.2020). – Текст : электронный.

Дополнительная:

- 1. Барский, А.Б. Логические нейронные сети: учебное пособие / А.Б. Барский. Москва: Интернет-Университет Информационных Технологий, 2007. 352 с. ЭБС Университетская библиотека online. URL: http://biblioclub.ru/index.php?page=book&id=232983 (дата обращения: 09.05.2020). Текст: электронный.
- 2. Галушкин, А. И. Нейронные сети: основы теории / А.И. Галушкин. Москва: Горячая линия-Телеком, 2012. 496 с. ЭБС ZNANIUM.com. URL: https://new.znanium.com/catalog/product/353660 (дата обращения: 09.05.2020)
- 3. Рутковская, Д. Нейронные сети, генетические алгоритмы и нечеткие системы / Д. Рутковская, М. Пилиньский, Л. Рутковский; пер. с польск. И.Д. Рудинского. 2-е изд., стереотип. Москва: Гор. линия-Телеком, 2013. 384 с. ЭБС ZNANIUM.com. URL: https://new.znanium.com/catalog/product/414545 (дата обращения: 09.05.2020) Текст : электронный
- 9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины
- 1. Информационно-образовательный портал Финансового университета при Правительстве Российской Федерации http://portal.ufrf.ru/
- 2. Сайт департамента анализа данных, принятия решений и финансовых технологий.
- 3. ГОСТ Р 34.10-2012. Информационная технология. Криптографическая защита информации. Процессы формирования и проверки электронной цифровой подписи» http://www.altell.ru/legislation/standards/gost-34.10-2012.pdf

- 4. ГОСТ Р 34.10-2001 Информационная технология. Криптографическая защита информации. Процессы формирования и проверки электронной цифровой подписи http://kaf403.rloc.ru/POVS/Crypto/GOST_R_34.10-2001.pdf
- 5. Электронная библиотека Финансового университета (ЭБ) http://elib.fa.ru/ (http://library.fa.ru/files/elibfa.pdf)
- 6. Электронно-библиотечная система BOOK.RU http://www.book.ru
- 7. Электронно-библиотечная система «Университетская библиотека ОН-ЛАЙН» http://biblioclub.ru/
- 8. Электронно-библиотечная система Znanium http://www.znanium.com
- 9. «Деловая онлайн библиотека» издательства «Альпина Паблишер» http://lib.alpinadigital.ru/en/library
- 10. Электронно-библиотечная система издательства «Лань» https://e.lanbook.com/
- 11. Электронно-библиотечная система издательства «ЮРАЙТ» https://www.biblio-online.ru/
- 12. Научная электронная библиотека eLibrary.ru http://elibrary.ru

10. Методические указания для обучающихся по освоению дисциплины

Самостоятельная работа студентов проходит аудиторно и внеаудиторно. Организации самостоятельной работы служит учебно-тематический план изучения дисциплины. В этом плане указана тематика лекций, практических занятий, вопросы и задания для самостоятельного изучения.

Домашние задания следует выполнять регулярно при подготовке к практическим занятиям. Контроль выполнения домашних заданий осуществляется в ходе практических занятий в процессе выборочного собеседования.

- 11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень необходимого программного обеспечения и информационных справочных систем
- 11.1. Комплект лицензионного программного обеспечения:

Windows, Microsoft Office;

Антивирус ESET Endpoint Security.

11.2 Современные профессиональные базы данных и информационные справочные системы:

Информационно-правовая система «Консультант Плюс»;

Информационно-правовая система «Гарант»;

Электронная энциклопедия: http://ru.wikipedia.org/wiki/Wiki

Система комплексного раскрытия информации «СКРИН» - http://www.skrin.ru

- 11.3. Сертифицированные программные и аппаратные средства защиты информации не предусмотрено.
 - 11.4. Система символьных вычислений MATLAB.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наличие аудитории для проведения занятий.